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• The analysis of the spread of SARS-COV-
2 over a territory and in time is key to
understand the dynamics of the epi-
demic

• A spatio-temporal analysis is necessary
to identify local-level transmission
risks according to viral load in cases
clusters

• The dynamics of the spatio-temporal
spread of SARS-COV-2 is different be-
tween urban and rural areas

• Early localization of clusters help
implementing targeted protective mea-
sures limiting the spread of the SARS-
CoV-2 virus

• The use of geographic information is key
for public health decision makers to
mitigate the spread of the virus
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To understand the geographical and temporal spread of SARS-CoV-2 during the first documented wave of infec-
tion in the state of Vaud, Switzerland, we analyzed clusters of positive cases using the precise residential location
of 33,651 individuals tested (RT-PCR) between January 10 and June 30, 2020. We used a prospective Poisson
space-time scan statistic (SaTScan) and a Modified Space–Time Density-Based Spatial Clustering of Application
withNoise (MST-DBSCAN) to identify both space-time and transmission clusters, and estimated cluster duration,
transmission behavior (emergence, growth, reduction, etc.) and relative risk. For each cluster, we computed the
number of individuals, the median age of individuals and their viral load.
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Among the 1684 space-time clusters identified, 457 (27.1%)were significant (p ≤ 0.05), such that they harbored a
higher relative risk of infection within the cluster than compared to regions outside the cluster. Clusters lasted a
median of 11 days (IQR 7–13) and included a median of 12 individuals per cluster (IQR 5–20). The majority of
significant clusters (n = 260; 56.9%) had at least one person with an extremely high viral load (>1 billion cop-
ies/ml). Those clusters were considerably larger (median of 17 infected individuals, p < 0.001) than clusters
with individuals showing a viral load below 1 million copies/ml (median of three infected individuals). The
highest viral loads were found in clusters with the lowest average age group considered in the investigation,
while clusters with the highest average age had low to middle viral load. In 20 significant clusters, the viral
load of the three first cases was below 100,000 copies/ml, suggesting that subjects with fewer than 100,000 cop-
ies/ml may still be contagious. Notably, the dynamics of transmission clusters made it possible to identify three
diffusion zones, which predominantly differentiated between rural and urban areas, the latter being more
prone to persistence and expansion, which may result in the emergence of new clusters nearby.
The use of geographic information is key for public health decision makers in mitigating the spread of the SARS-
CoV-2 virus. This study suggests that early localization of clusters may help implement targeted protective mea-
sures limiting the spread of the virus.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The novel coronavirus SARS-CoV-2 that causes the COVID-19disease
has impacted society at an unprecedented scale. The number of infected
people increased rapidly around the globe, with over 141 million con-
firmed cases as of April 2021 and more than 3 million deaths (World
Health Organization, 2021a; World Health Organization, 2021b). The
rapid dissemination of the disease has challenged international experts
and policymakers to implement strategies with regards to local viral
spread, healthcare resources, economic and political factors (Nicola
et al., 2020; see also the cross-country analysis of COVID-19 response:
https://analysis.covid19healthsystem.org/). Contact tracing, lockdowns
and quarantines have been implemented around the world in a bid to
contain the virus spread, and has impacted over four billion people
worldwide (Chu et al., 2020). These measures are aimed at protecting
approximately 22% of the world's population at risk of severe COVID-
19 complications (Clark et al., 2020), with important social and eco-
nomic consequences (Chu et al., 2020; Ruktanonchai et al., 2020;
Faber et al., 2020).

COVID-19 outbreaks occur via close contacts, which form clusters of
positive cases. Critical challenges for containing the spread of the virus
lie (i) in the early detection of clusters, which reflect active viral trans-
mission (De Ridder et al., 2020a), and (ii) in the understanding of the
spatial and temporal evolution of clusters (Hohl et al., 2020). Geospatial
tools using the precise location of the place of residence of tested indi-
viduals are highly effective to monitor an epidemic (Franch-Pardo
et al., 2020; Keesara et al., 2020). They allow for the implementation
of targeted strategies to control the local spread of disease through
space and time (Cromley, 2019).

Althoughwidely used, there is no general agreement on the definition
and concepts relating to clusters, outbreaks and hotspots, particularly
given a spatial context. Yet, information available from public health de-
partments around the world converge despite existing differences. The
term “cluster” generally refers to a temporal aggregation and a spatial
concentration of infection cases. Generally, COVID-19 clusters are defined
as two ormore test-confirmed cases – though this varies to three ormore
in France (www.santepubliquefrance.fr) and Switzerland, up to 10 or
more in New Zealand (www.health.govt.nz) – between individuals asso-
ciated with a specific non-residential setting with illness onset dates
within 7 to 14 days. To further label clusters as an “outbreak”, one must
also have either (i) identified direct exposure between at least two of
the test-confirmed cases in that setting (for example under one meter
face-to-face) during the infectious period of one of the cases, or (ii) if
there is no sustained local community transmission, noticed the absence
of an alternative source of infection outside the setting for the initially
identifiedpositive case (PublicHealth England, 2020). Clusters are also as-
similated to the concept of “hotspot”, which is not clearly defined neither
but often used in spatial epidemiology (Lessler et al., 2017). The World
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Health Organization (WHO) has defined a set ofmethods and procedures
to identify epidemic hotspots for use in global surveillance of populations
(UNAIDS/WHO, 2013). Additionally, infectious diseases studies have pro-
posed methods to identify and characterize spatial clusters (Bejon et al.,
2010; Bousema et al., 2012).

The identification of high prevalence areas for any phenomenon
constitutes a specific research domain in spatial statistics. Point pattern
analysis (Gatrell et al., 1996) and local spatial autocorrelation methods
have previously been applied in the detection of disease clusters
(Jacquez and Greiling, 2003). In the current COVID-19 pandemic,
Zhang et al. (2020) used local Moran's statistics to identify clusters in
China at a large geographic scale using incident cases aggregated at
the level of large administrative units. Among studies involving
geospatial information reviewed by Franch-Pardo et al. (2020), few
have characterized the spread of COVID-19 across space and time (e.g.
Desjardins et al., 2020), and even fewer studies used spatial statistics
to detect clusters at a local scale (De Ridder et al., 2020a; De Ridder
et al., 2020b). More studies at local and regional scales that consider de-
mographic characteristics of a population at risk are needed to provide
timely information to enable accurate prevention and containment
measures (Franch-Pardo et al., 2020). Indeed, the precise detection of
spatial clusters, the description of their dynamics and evolution over
time in a geographical context are key to inform decision-makers, to de-
ploy smart testing overtime, and to provide targeted health and preven-
tion interventions at a local scale (Kamel Boulos and Geraghty, 2020).

The persistence in time of clusters were shown to be associatedwith
socio-economic deprivation (De Ridder et al., 2020b), but the size and
duration of clusters are also likely to be due to “super-spreader” individ-
uals or events (Danis et al., 2020). These super-spreader individuals or
events are considered to greatly contribute to the transmission of an in-
fectious disease (Lau et al., 2020). This process relates to the evidence
for large variation in individual reproductive number, where some indi-
viduals contribute more than others to epidemics (Lloyd-Smith et al.,
2005). Super-spreaders correspond to the small percentage of individ-
uals (20%) within any population to control most (80%) transmission
events (the 20/80 rule; see (Stein, 2011)). Super-spreaders are also
present for the SARS-CoV-2 virus (Lau et al., 2020; Frieden and Lee,
2020); these individuals are more likely to be highly infectious, which
is suggested to be related to high viral loads (Beldomenico, 2020). Nota-
bly, as recently shown in (Jacot et al., 2020), the viral load of people in-
fected with SARS-CoV-2 appears to be similar to what is observed for
other respiratory viruses such as influenza B. It remains to be explored
why SARS-CoV-2 exhibits such a high reproductive number (R0) of
about 2 to 3.5 (Liu et al., 2020), and if the transmission pattern, cluster
duration and size somehow correlate with viral load within a detailed
spatio-temporal context.

Here, we characterize the spatial and temporal dynamics of the first
wave of SARS-CoV-2 infections in the state of Vaud (western
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Switzerland) through the detection and location of clusters. Clusters are
defined by location and time where individuals are expected to have
been in contact (rather than by observed contacts between individual).
For each cluster, we measure size, duration and composition (number
and age of individuals, as well as their viral load). We use the results
of the SARS-CoV-2 RT-PCR tests (n= 33,651) performed by the Micro-
biology Laboratory of the Lausanne University Hospital (CHUV) be-
tween January 10 and June 30, 2020 (with a first positive case on
March 2, 2020). The data used here include the results of RT-PCR tests,
viral loads (copies/ml) for positive tests, individual age, and geographic
location of residence for individuals tested. We used a spatial scan ap-
proach (Kulldorff, 1997; Moraga and Montes, 2011) to (i) detect
spatio-temporal clusters of COVID-19 on a daily basis, (ii) disentangle
the relationships between cluster size, duration and composition, and
(iii) assess the importance of viral load in the evolution of clusters. We
also implemented a Modified Space-Time DBSCAN (MST-DBSCAN) al-
gorithm (Kuo et al., 2018) to characterize the diffusion dynamics of
transmission clusters. Finally, we discuss the effects of a soft lockdown
used across Switzerland between March 19 and April 27, 2020, on the
spread dynamics of the virus.

2. Material and methods

2.1. Patients

Patients exhibiting symptoms compatible with COVID-19, including
fever, cough, dyspnea, and loss of smell or taste, were tested using RT-
PCR for the presence of the SARS-CoV-2 in their nasopharyngeal
secretions, particularly for those considered as either vulnerable
(e.g., immunosuppressed, obese, with chronic obstructive lung disease
or age > 65 years) or likely to be exposed to vulnerable people (e.g.
healthcare workers or those living with vulnerable persons). The
studied population therefore predominantly includes vulnerable symp-
tomatic individuals. Moreover, people who had been in contact with
positive caseswere also tested and included in the study, even if asymp-
tomatic, to determine the necessity of a 10 day quarantine or isolation
period. The precise residential address and age of the patient was col-
lected at the time of sampling.

2.2. SARS-COV-2 RT-PCR

Most RT-PCR were performed using the automated molecular
platform implemented at the Institute of Microbiology (Lausanne
University Hospital, CHUV). It uses the Magnapure automated RNA
extraction method followed by PCR amplification on QuantStudio
automated systems (Greub et al., 2016) with primers described by
Corman et al. (2020), later slightly modified according to Pillonel et al.
(2020) to further improve PCR sensitivity. From March 24, 2020, most
RT-PCR were performed with the COBAS 6800 RT-PCR test, which ex-
hibited similar performance than the home-brew automated approach
(Opota et al., 2020). Some cases (n = 71) were tested using the
GeneXpert approach to reduce processing time (Moraz et al., 2020).
Viral load was calculated based on the “cycle threshold” (Ct) defined
as the number of cycles required for the fluorescent signal to cross a
given value threshold (Opota et al., 2020; Moraz et al., 2020).

2.3. Study area

Datawere collected in the south-western Swiss state of Vaud, north of
Lake Geneva. Vaud has an area of 3212 km2 (Fig. 6A)with a population of
811,203 (end of 2019), giving an average density of 249 inhabitants/km2.
Notably there are population density differences between the urban
area of Lausanne-Morges on the shores of Lake Geneva (~3000 inhabi-
tants/km2) and rural areas towards the north (~200 inhabitants/km2).
An exception is the area of Yverdon-les-Bains, located directly south
of the Lake of Neuchâtel with ~2200 inhabitants/km2.
3

2.4. Spatio-temporal clusters

We used SaTScan software (version 9.6.1) to detect daily space-time
clusters of individuals who were tested positive for SARS-COV-2 in the
state of Vaud fromMarch 2 to June 30, 2020, (no positive cases between
January 10 and March 2, 2020). The algorithm developed by Kulldorff
(1997) testswhether a disease is uniformlydistributed among individuals
over space and time. It uses a “moving cylinder”, with the base and height
corresponding to the spatial and temporal components, respectively. Sig-
nificance tests evaluate excess relative risk, i.e., more observed COVID-19
cases than expectedwithin themoving cylinder relative to randomly dis-
tributed cases over space and time. We implemented this algorithm
across a daily prospective surveillance analysis. We used a discrete
Poisson model, where the number of events in the geographic area
(total number of positive tests) is Poisson-distributed, according to a
knownunderlyingpopulation at risk. Though typical SaTScanapplications
use the default value of 50% of the population at risk for the spatial size
cluster's radius, here we selected a radius covering a maximum of 0.5%
of the total resident population (population at risk) in the state of Vaud
(N = 811,203 inhabitants; SFSO, 2019), as a smaller value emphasizes
the discovery of small and homogeneous clusters (Chen et al., 2008).
Tested individuals and the underlying population at risk were
georeferenced at the centroids of a hectometric grid (SFSO, 2020) cover-
ing the entire study area. The minimum number of positive cases consid-
ered to constitute a cluster was set to three, and we restricted the
temporal scanning window to a minimum of two days and a maximum
of 14 days (see Supp. Mat. 1). The upper limit of 14 days accounts for
the incubation period (generally 2 to 7 days) and infectious time (gener-
ally 7 to 10 days from symptom onset, as deduced from different culture-
based and RT-PCR-based investigations; Jaafar et al., 2020; Jeong et al.,
2020; Caruana et al., 2021; To et al., 2020). The significance of the clusters
was evaluated on the basis of 999 Monte-Carlo permutations that ran-
domized both locations (Besag and Diggle, 1977) and times of the cases.

2.5. Cluster evolution and diffusion zones

We used MST-DBSCAN (modified space–time density-based spatial
clustering of application with noise; Kuo et al., 2018) to characterize
the diffusion dynamics of clusters. MST-DBSCAN is an algorithm used
to detect, characterize, and visualize disease cluster evolution in geo-
graphic space and time. It geographically computes a kernel density
that considers the effect of the incubation period of an infectious dis-
ease. It is based on DBSCAN (Ester et al., 1996), a non-parametric
density-based clustering algorithm that groups together objects (here,
SARS-COV-2 positive cases) that are closely packed together (points
withmany nearby neighbors), marking points falling in low-density re-
gions as outliers. TheMST-DBSCAN identifies seven different cluster be-
haviors: a) emerge, b) grow, c) remain steady, d) merge, e) move,
f) split or g) reduce.

We applied the MST-DBSCAN analysis to the 3317 COVID-19 positive
cases identified (among 33,651 tested individuals), georeferenced at their
precise residential address in the state of Vaud. Disease clusters were
computed daily fromMarch 4, 2020, to June 30, 2020. Themaximum spa-
tial radius considered was 1000 m, with a time window of 1 to 7 days to
reflect the average infectious period after a positive test (see Supp. Mat.
1). A cluster was defined as a minimum of three positive cases. For all
identified clusters, we established a typology of similar diffusion patterns
in the geographical space. We associated clusters with postcodes areas
(557 units; MicroGIS, 2019) in the state of Vaud to use as spatial refer-
ences. Then, we focused on three main behaviors to characterize the
diffusion type through the postcode areas: a) Increase, if an area was cov-
ered by clusters whose evolution type was Emerge, Growth, or Merge;
b) Keep, if an area was covered by clusters whose evolution type was
Steady orMove; c)Decrease, if an areawas covered by clusterswhose evo-
lution type was Reduction or Split. Postcodes with similar diffusion pat-
terns over the entire study period were grouped using the Louvain
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method, a group detection algorithm that uses network analysis (Blondel
et al., 2008). This approach synthetizes the spatio-temporal information
and facilitates its visualization on a single map. Equations for the MST-
DBSCAN approach are provided in Supp. Mat. 2.

3. Results

3.1. Epidemic trajectories of positive cases

A total of 33,651 individuals were tested over a period of 6 months
(March 2 to June 30, 2020), of which 3317 (9.86%) were confirmed as
positive using RT-PCR. Of these positive cases, 79% (2609/3317) oc-
curred betweenMarch 9 and April 5, though this four week period cor-
responds to only 16% of the study period total duration (Fig. 1A). The
peak of the first epidemic wave occurred on March 18, which was two
days after the soft lockdown was implemented in Switzerland, that
lasted from March 16 to April 27 (vertical dashed lines in Fig. 1A). Up
to 180 individuals a day were documented as “positive” in our labora-
tory at the peak number of cases during the study period (Fig. 1A,
dark blue). The number of positive cases then decreased considerably
from the first of May. The highest proportion of positive tests was ob-
served four days after the peak of the epidemicwave, with a rate of pos-
itive tests reaching 32% (Fig. 1A, light blue). The rate of positive cases
was relatively high at the start of the epidemic when few individuals
were tested. After this, the shape of the curve of the percentage of pos-
itive tests followed the one of the number of cases. This is likely because
at the beginning of the epidemic, only individuals with symptoms and
those at risk were tested, and it was only later that a much wider
range of individuals were tested such that all symptomatic individuals
and asymptomatic individuals in contact could access a test.

3.2. Cluster detection and temporal dynamics

We identified 1684 space-time clusters ofmore than two cases using
residential address for individuals tested positive to SARS-CoV-2. Of
these, 457 clusters were considered significant based on the within-
proportion of positive cases compared to the total documented positive
cases. Highest values of both significant and non-significant clusters
were observed between March 9 and April 5 (Fig. 1B) and then the
number of clusters decreased. The decrease in positive cases following
the beginning of the soft lockdown (Fig. 1A) occurred approximately
two weeks before the decrease in the number of clusters (Fig. 1B). The
number of clusters displays a similar pattern through time but with a
difference in amplitude. As shown in Fig. 1C, the estimated relative
risk for new clusters was greater before the soft lockdown and approx-
imately 80 days after the end of the lockdown. The size of the clusters
(i.e., number of cases within clusters) used to compute the relative
risk did not strongly change the value of the relative risk during the
core of the epidemic wave. However, cluster size affected relative risk
when the number of positive cases was small, such as at the beginning
and at the end of the epidemic wave.

3.3. Cluster composition

Significant space-time clusters generally involved a larger number of
positive cases (maximum mean of 21 cases, where the largest cluster
had 43 cases on March 25) compared to non-significant clusters (max-
imum mean of 11 positive cases; Fig. 2A). Notably, significant clusters
with more than 15 positive cases were predominantly observed shortly
after the soft lockdown was implemented from March 16 to April 27,
with one exception on April 3 (Fig. 2A). Cluster durations – although
limited to 14 days - increased over time from the start of the epidemic
wave, showing little differences between significant and non-
significant clusters. There was an absence of significant clusters from
May 3 to June 16 (Fig. 2B).
4

3.4. Viral load in clusters

Clusters were defined by the presence of at least three positive cases
within a limited geographic area, as documented in the SaTScan analy-
sis. All clusters were then characterized according to the nasopharyn-
geal viral load of the cases for each cluster (Table 1). Five significant
clusters were composed of three cases exhibiting a viral load below
10,000 copies/ml at time of testing, which is the same low load as
found in non-significant clusters (Supp. Mat. 5). However, significant
clusters were more likely to be detected when viral loads were above
100 million copies/ml (Fig. 3). Finally 18 significant clusters with at
least one individual showing between 1 billion and 10 billion copies/ml
were documented on March 24 (Fig. 3, pink curve). There was a signifi-
cant difference between the frequency distribution of viral loads in
significant clusters compared with non-significant clusters and outside
clusters (Kolmogorov–Smirnov test, two-sample case, p < 0.001, see
Supp. Mat. 3 and 4).

Themean viral load of the first three cases was also studied, in order
to gain insight of the possible relationship between nasopharyngeal
viral load and contagiousness, indirectly measured by the documenta-
tion of subsequent clusters. For 20 significant clusters, all first three
cases exhibited a viral load below100,000 copies/ml, suggesting that in-
dividuals with fewer than 100,000 copies/ml may still be contagious
(Supp. Mat. 6). Moreover, the nasopharyngeal viral load of the first
three cases was below 1 million copies for 40 significant clusters.

3.5. Cluster size, duration and viral load

Cluster size was positively associated with the presence of individ-
uals with high viral loads (Fig. 4A). The highest viral loads measured
were greater than 10 billion copies/ml and occurred in the largest clus-
ters (median of 21 positive cases). This was used to identify super-
spreading events. When comparing clusters harboring individuals
with all viral loads below 1 million copies/ml with the ones where at
least one case had a viral load above 1 million copies/ml, the cluster
sizes were significantly different, withmedian cases per cluster increas-
ing from three to four (p < 0.001; Fig. 4A). Similar relationships were
observed when considering the mean and maximal values of viral
loads of the first three positive cases (Fig. 5A & B).

Highest viral loads were found in clusters with individuals showing
the lowest average age group considered in the investigation. Clusters
composed of individuals in the highest average age group showed low
to middle viral loads (Fig. 4B). The median age of individuals within a
clusterwas significantly higherwhen the cluster viral loadwas between
1 and 10 million copies/ml. The average age group then progressively
decreased from 74 to 48 years, while viral load increased. Cluster dura-
tion was only significantly different between the orange category (100
million to 1 billion/ml) and the pink category (1 to 10 billion/ml),
where clusters of the latter lasted half a day longer (mean of +0.46
days, p < 0.001; see Fig. 4C).

Clusterswith individuals in the lowest average age group considered
in the investigation and clusters with the highest viral loads (Fig. 4B)
also constitute the largest clusters (Fig. 4A) and those that last the
longest (Fig. 4C), respectively.

3.6. Geographic distribution of the first epidemic wave

We chose six key dates to illustrate the evolution of the two cluster
types during the first wave of the epidemic in the state of Vaud. Anima-
tions showing the spatio-temporal evolution of the clusters for the
entirety of the first wave and showing the dynamics of clusters' behav-
ior can be found in Supp. Mat. 7 and Supp. Mat. 8, respectively. Fig. 6
shows the spatial distribution of space-time clusters (A–F) and
compares it to information translating the diffusion dynamics of the
clusters (A′–F′). A detailed description of the first SARS-CoV-2 epidemic



Fig. 1. Evolution of cases and clusters through time. The vertical dashed lines delimit the Swiss lockdown period (March 16 to April 27). (A) Epidemic trajectory of positive tests. The daily
new confirmed cases are represented in dark blue and the percent of positive tests are represented in light blue. (B) Number of case clusters over time. The total number of clusters
detected daily by space-time scan statistics are represented in dark blue, and the red and grey lines represent the proportion of significant clusters (p ≤ 0.05) and non-significant
clusters (p > 0.05), respectively. (C) Average relative risk of significant space-time clusters (p ≤ 0.05) over time according to within-cluster cases. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

A. Ladoy, O. Opota, P.-N. Carron et al. Science of the Total Environment 787 (2021) 147483
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Fig. 2.Case cluster characteristics over time. Themean and confidence intervals of the number of caseswithin clusters (A) and the duration of clusters (B) are calculated for significant (red
line) and non-significant clusters (grey line). Between May 6 and June 15, the prospective space-time scan statistic detected no significant clusters. The vertical dashed lines delimit the
Swiss lockdown period (March 16 to April 27). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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wave in the of Vaud can be found in Box 1, illustrating the powerful and
critical information that the approach offers.

Cluster behaviors described in Box 1were summarizedwith four dif-
fusion zones shown in Fig. 7A and identified at the level of postal code
areas using MST-DBSCAN (Fig. 7B, C, D). The grey diffusion zone corre-
sponds to areas where no clusters emerged, while the green, orange
and blue diffusion zones differ in the way clusters evolved over time.
The green diffusion zones correspond to areaswhere the clusters imme-
diately increased in size at the beginning of the epidemicwave (red line,
Fig. 7B), but decreased drastically once the soft lockdown (vertical dash
line) was implemented. We then observed a second peak associated
with an important increase of clusters that reduced in size (red line,
Fig. 7B). Both red and purple curves are bimodal and tended to decrease
afterwards, with a few numbers of new small peaks that plateau
forming a distribution with a long right tail. Conversely, orange and
blue diffusion zones show a first peak of increasing clusters later, at
about the time of the start of the soft lockdown (orange & blue areas,
Fig. 7C and D). Both zones also show clusters that remained stable in
size during the soft lockdown (blue line). Only the blue diffusion zone
showed no further clusters after April 27, which corresponds with the
end of the lockdown, and is the only zone that did not display a bimodal
distribution of clusters. Note that no difference in viral load was docu-
mented among these different diffusion zones (Fig. 7E).
6

4. Discussion

The discussion is divided into three major parts. The first highlights
results that uncover new information on COVID-19 clusters, the second
summarizes limitations of the interpretation of the results, and the third
describes the added value of these methods for tackling epidemic
problems and evaluating the effects of lockdown strategies.

4.1. New information on COVID-19 clusters

4.1.1. A temporal lag between documentation of positive cases and clusters
burden

Significant clusters were predominantly observed fromMarch 15 to
April 5 (red curve in Fig. 1B), while non-significant clusters in high
population-density areas, such as Lausanne, were documented 4 to 5
days earlier and continuously occurred until mid-May (grey curve on
Figs. 1B, and 6A). We observed a time-shift between the decrease in
the number of positive cases and the decrease in the number of clusters.
This delay could be explained by the fact that most positive cases might
have been at the origin of lasting clusters, i.e. clusters that last longer
than 10 days fromwhen their first positive cases are identified. Interest-
ingly, thenumber of patients hospitalized at LausanneUniversityHospi-
tal (CHUV) and the number of COVID-19-related deaths in the state of



Fig. 3.Number of significant (p ≤ 0.05) case clusters over time characterized according to the viral load of the cases documented in each cluster. The vertical dashed lines delimit the Swiss
lockdown period (March 16 to April 27). For each cluster, we extracted the positive test individuals intersecting the cluster both geographically and temporally, andwe characterized the
clusters according to the viral load of the individuals composing it. The clusters represented in green are composed only of individuals with a viral load of less than 1million copies/ml. The
clusters shown in blue are made up of at least one individual with a viral load between 1 million and 10 million copies/ml, and so on. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Vaud also followed the same epidemic curve, but with a two weeks
delay (personal communication, G. Greub).
4.1.2. Viral load is strongly informative about the presence and size of SARS-
CoV-2 clusters

Our results show that clusters at the peak of the SARS-CoV-2
epidemic wave were composed of individuals with a high viral load.
Cluster size is positively associated with the presence of individuals
with a high viral load in significant clusters, though in 40 clusters the
first three cases exhibited a viral load below 1million copies/ml, includ-
ing 33 clusters with individuals that had a nasopharyngeal viral load
below 1million copies/ml. Moreover, as many as 20 clusters were com-
posed of cases that initially had a viral load below 100,000 copies/ml,
Table 1
Classification of the space-time clusters according to the viral load of the cases involved.Within
subjects, geocoded at the residential address, with space-time clusters. For example, a clusterwa
its active period had a viral load below 1 million copies/ml.
For each cluster category, the total number of case clusters detected by prospective space-time
nificant clusters (p ≤ 0.05) are reported.

Case cluster viral load category Total

All below 1 million 106
At least one between 1 million and 10 million 128
At least one between 10 million and 100 million 125
At least one between 100 million and 1 billion 659
At least one between 1 billion and 10 billion 636
At least one above 10 billion 30
Total 1684
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suggesting that subjects with fewer than 100,000 copies/ml may still
have been contagious.

The fact that significant clusters are composed of patients with viral
loads as low as those found in non-significant clusters further supports
the hypothesis that community transmission can occur with low levels
of viral load. Nevertheless, this may also reflect a statistical bias as large
clusters with more than 10 individuals are more likely to have at least
one individual with a very high viral load.
4.1.3. Advantage of RT-PCRs over antigen-based testing
Given the relatively low sensitivity of antigen tests, we estimate that

we would have missed or had delayed identification of approximately
24 clusters. Indeed, the 20 significant clusters with a viral load of the
-cluster caseswere identified bymatching both geographically and temporally positive test
s classifiedas “all below1million” if all individuals tested positivewithin the cluster during

scan statistics over the entire study period (March 2 to June 20) and the proportion of sig-

number of clusters Number of significant clusters

33 (31.1%)
23 (17.9%)
13 (10.4%)
128 (19.4%)
251 (39.4%)
9 (30.0%)
457



Fig. 4. Characteristics (size, age and duration) of significant space-time clusters (p ≤ 0.05) over the study period, categorized according to the viral load of the cases involved. The
classification procedure is explained in more details in the legend of Table 1. Characteristics include the number of cases observed in clusters (A), the mean age of the positive tests
individuals forming clusters (B), and the duration of clusters (C).
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three first cases below100,000 copies/mlwould not have been detected
with antigen tests, given that the best tests have a detection limit of
about 100 to 200,000 copies/ml (Caruana et al., 2021). Moreover, the
clusters with a case between 100,000 copies/ml and 1 million copies/
ml would not have been detected in 5% of cases given an overall antigen
sensitivity for such viral load of about 80% (Caruana et al., 2021). Thus,
an antigen-based strategy would have missed about 5% (24/457) of
the significant clusters. Therefore, for the second wave that began in
October 2020 across western Switzerland, we advocated against the
use of antigen tests for the vulnerable population and healthcare
workers, as well as with non-vulnerable subjects during non-acute
periods of SARS-CoV-2 infection (1 to 4 days of symptoms), despite
encouraging results for antigen tests in subjects within the first four
days of symptom onset (Schwob et al., 2020).

4.1.4. High viral load in large clusters within the youngest group age
Within clusters, we found a clear negative relationship between age

and level of viral load (Fig. 4B), and between cluster size and viral load
(Fig. 4A). Indeed, while a high viral load was found in large clusters
with the youngest group age considered in this study, low to intermedi-
ate viral load was measured in small clusters composed of older age
groups. This suggests that large clusters were generated by active indi-
viduals from the working population, and super-spreader events may
be at the origin of such large clusters. Surprisingly, when the level of
viral load was analyzed across age groups, no relationship was found
(Supp. Mat. 9), meaning that useful information emerges within clus-
ters. Indeed, the characterization of the clusters provides a deeper anal-
ysis of the mechanisms behind the progression of an epidemic and the
8

geographic analysis of clusters of cases might constitute a type of
investigations to favor in the future.

4.1.5. Non-significant clusters also convey information on the progression
of the epidemic

Significant and non-significant clusters both show the same epide-
miological trajectories. Indeed, they display similar patterns in terms
of changes in size, differing only in amplitude. This suggests that the
occurrence of clusters, even if non-significant, is a good estimator of
the epidemic situation. Significant and non-significant clusters differ
in termsof number of cases andmeasured viral load, but not in duration.
This suggests that non-significant clusters (i) might correspond to
transmission events unrelated to subjects with very high viral load,
(ii) translate a lower impact on the population in terms of viral spread,
and (iii) express a transition towards or from a significant spatio-
temporal configuration.

4.2. Limitations

4.2.1. Tested population is not homogeneous through time
During the course of the studied epidemic wave, recommendations

for testing as requested by the authorities changed. Initially, only symp-
tomatic patients at risk and health workers were tested. Then, from
mid-March a wider proportion of the population was progressively
tested, though younger individuals still were reluctant to get tested.
This may have generated heterogeneity in our longitudinal investiga-
tion. Moreover, tests were likely performed at different stages of infec-
tion (early, late, etc.) and might not be representative of the correct



Fig. 5.Number of cases observedwithin significant space-time clusters (p ≤ 0.05) in function of themean (A) andmaximal (B) viral loads of thefirst three cases involved. Points are colored
according to the significance level of the cluster, as assessed through 999 Monte Carlo random permutations.
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window of infection. The day of the week may also have generated dif-
ferences in the number of positive tests. Indeed the number of tests was
often smaller during weekends, as some individuals preferred being
tested only on the following Monday to avoid quarantining over the
weekend.

4.2.2. Positive cases might be missing
Our estimate of the number of positive cases is not fully representa-

tive of the epidemic, particularly at the beginningwhen only symptom-
atic at-risk patients and health workers were tested. We might expect
that close relatives of positive cases were also infected but not tested
due to reagent shortage. However, this biasmight have a limited impact
on the assessment of cluster size, as any person in contact with a
positive case (documented by the contact tracing team) was tested.
An additional source of underestimation could be from the false nega-
tive RT-PCRs results due to imperfect nasopharyngeal sampling, though
the clinical sensitivity of RT-PCR performed on nasopharyngeal samples
in our laboratory is very sensitive, with 96 to 98% accuracy (Schwob
et al., 2020; Mueller et al., 2020). Similarly, the rate of false positives
in the same laboratory was estimated to be lower than 1/10,000 tests,
due to full automation and bar-coding that was used to prevent
human error and samples/tubes inversion (Greub et al., 2016). Asymp-
tomatic patients might also contribute to the spread of the disease,
though those individuals were not detected and thus could not be
9

accounted for in this study unless they were among the contacts traced
from positive cases. Finally, missing positive cases could be from people
living or working at the state border, such that they were tested else-
where. However, this seems to have a limited impact as over 80% of
all samples tested for SARS-CoV-2 in 2020 were obtained from individ-
uals living in the state of Vaud.

4.2.3. Many space-time scan clusters
In this study, we adopted a posture to reproduce the daily monitor-

ing of the epidemic. As a result, the analysis was repeated each day. In
this configuration the number of clusters detected is unusually high
compared to the total number of positive cases. Indeed, the same subset
of positive cases can be responsible for several clusters if an area pre-
sents an excessive relative risk for several days in a row, as we consider
a time window of 14 days. This is why the clusters' summary statistics
for viral load, cluster's duration, and age of the subjects is smoothed.

4.3. Added value of the methods used

4.3.1. Geographic clusters to characterize epidemics: a key tool for
intervention

Despite the lack of a formal definition for clusters in a geographical
context, the statistical approaches used heremake implicit assumptions
that – through different parameters – have a direct influence on cluster



Box 1
The first SARS-CoV-2 epidemic wave in the state of Vaud, Switzerland.

On March 11, 2020, 7 days after the first detection of a positive
case (Fig. 6A), we observe a phase of rapid growth and merging
(see Fig. 6A′), where a series of significant clusters appear directly
north of Lausanne, the main city of the state. Interestingly, three
out of the four clusters shown are located inwealthy areas. March
15 (Fig. 6B and B′) is the day before the soft-lockdown. There are
multiple clusters in the Lausanne area, among which a large frac-
tion are significant (Fig. 6B). Fig. 6B′ shows that these clusters
rapidly merged into a single “super cluster” deployed over the ur-
ban agglomeration. In the rural areas, active clusters emerge and
grownorth of the lake in the Joux valley, located in the Juramoun-
tains, where population density is low. Four days later, on March
19 (Fig. 6C and C′), the peak of the first wave is approaching
(see Fig. 1B). The number of case clusters is high in the Lausanne
area (Fig. 6C) but stabilizes. Similar behavior is observed towards
the east along Lake Geneva; only one moving cluster is observed
in the Riviera area (Fig. 6C′), compared with new clusters
appearing in the Morges area to the west. In the Joux valley, the
activity remains important, and a cluster grows in Yverdon-les-
Bains, south of the Lake of Neuchâtel. On March 24 (Fig. 6D and
D′), the peak of the first wave is reached (see Fig. 1B). New cases
reactivate moving clusters in the center of Lausanne, while to-
wards west the situation stabilizes and even reduces towards
Geneva with no further significant cluster in the Nyon area. At
the peak, a large significant cluster remains steady in the Jura,
and several clusters grow in the remote, rural periphery north of
themain urban area (Fig. 6D andD′). In the north, close to the Lake
of Neuchâtel, the clusters are not significant despite growing. On
March 27 (Fig. 6E and E′), all clusters start an important and rapid
reduction phase (see Fig. 1B). The merged clusters of the
Lausanne area split, and most clusters in the country-side remain
steady. However, a significant cluster emerges in the west, in
the Nyon area. OnApril 4 (Fig. 6F and F′), the peak ends. The Joux
valley cluster ends after 25 days and clusters in the state are either
no longer significant, or are steady, split of reduce. There is one
exception north of Lausannewith a single growing cluster located
in a leisure area and is likely related to the presence of a school
(with boarding).
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detection and interpretation. We used two complementary approaches
that highlight different key aspects of disease clustering. Space-time
scan statistics detect the geographical location of case clusters, as-
sess their significance, and characterize their relative risk and dura-
tion. This prospective approach is particularly appropriate for the
establishment of a daily surveillance system, as it identifies ‘alive’
clusters only, i.e. having an excess of relative risk on the day of anal-
ysis (Kulldorff, 2001). Unlike other detectionmethods, this approach
Fig. 6. Spatial distribution of case clusters (A-F) and diffusion dynamics of transmission
clusters (A′–F′) for 6 key dates (March 11, March 15, March 19, March 24, March 27,
April 4) during the first epidemic wave. Case clusters resulting from the prospective
Poisson space-time scan statistics (A–F) are shaded according to their significance level:
dark red for statistically significant clusters with alpha = 0.01, light red for statistically
significant clusters with alpha = 0.05, and grey for non-significant clusters (p > 0.05).
Transmission clusters resulting from the MST-DBSCAN algorithm (A′–F′) are shaded
according to their evolution type: emerge (pink), growth (red), steady (green), merge
(yellow), move (orange), split (purple), and reduction (blue). Black points in (A) and (A′)
represent the 33,651 individuals tested during the study period (January 10 to June 30).
(For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 7. (A) Diffusion zones identified by the MST-DBSCAN algorithm. Postcode areas with the same color share similar diffusion patterns, and areas without any transmission clusters are
represented in grey. The black dots on the map indicate the 33,651 individuals tested for COVID-19 in the state of Vaud between January 10 and June 30, 2020. Below the map are the
frequencies of major evolution types over time for zone 1 (B), zone 2 (C) and zone 3 (D). The red line corresponds to the “increase” diffusion type whose area grows with time, the
blue line corresponds to the “keep” diffusion type assigned to clusters whose area remains stable, and the purple line corresponds to the “decrease” diffusion type whose area becomes
smaller. The vertical dashed lines delimit the Swiss lockdown period (March 16 to April 27). (E) Distribution of the viral load of test-confirmed cases living in each diffusion zone. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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searches for clusters without imposing the specification of their size
and allows for the analysis of areas with heterogeneous population
densities. Indeed, it identifies a cluster if the risk of disease within a
space-time cylinder (radius = space, and height = time) is higher
than outside the cluster. This information is key for public health au-
thorities to target neighborhoods and calibrate protective or preven-
tive measures to be deployed.

The MST-DBSCAN algorithm characterizes the diffusion dynamic of
the epidemic. Here, the input parameters require a precise definition
of the incubation period, the cluster transmission areas, and aminimum
number of spatio-temporal neighbors required to form a cluster (Kuo
et al., 2018). The algorithm returns a typology of the evolution of trans-
mission clusters, and identifies administrative units that are undergoing
a similar diffusion process. Compared to space-time scan statistics, the
MST-DBSCAN algorithm explicitly considers transmission relationships
between cases but does not provide information about the cluster size
(i.e., the within-number of cases) nor its statistical significance. The
two approaches used together therefore allow for detailed monitoring
of the disease's epidemic trajectory and populations at risk, and offer
adequate tools for governments to both prioritize interventions on
excess-risk locations and to develop adapted strategies to control clus-
ter diffusion types.

4.3.2. Maps reflect the chronology of the epidemic
The results displayed on static and animated maps reflect the chro-

nology of the sanitary situation during the first wave of the epidemic.
For instance, the major clusters in the Joux valley area can be clearly
observed ondifferentmaps (Fig. 6B, B′, C, C′). Notably, these large clusters
originate from a super-spreader event that took place at the end of
February in a religious ceremony in Mulhouse, France. Many Swiss resi-
dents participated in this ceremony, and related clusters were then
observed during the same period north of the Lausanne urban area and
along the Jura mountains (e.g., in Morges and Nyon). Conversely,
Lausanne was hit early-on by clusters, which is likely due to a first trans-
mission event that occurred in Northern Italy.

Interestingly, the initial phase observed in the state of Vaud differs
fromwhat happened in Geneva, where the first clusters emerged in de-
prived neighborhoods eight days (March 5) after the first positive case
(February 26) was detected (De Ridder et al., 2020a; De Ridder et al.,
2020b). In Vaud, however, the initial cluster was directly detected the
day of the first cases (March 4), with nine positive results in a wealthy
neighborhood.

4.3.3. Positive impact of soft lockdown
The soft lockdown was directly associated with a rapid reduction

in the number of positive cases despite the increased rate of testing.
This important reduction takes place in two clear phases in the main
urban areas (see Fig. 7B), while the reduction of positive cases occurs
as a succession of clusters increase and decrease in smaller urban
centers and less dense areas (Fig. 7D). However, due to the time lag
between the identification of positive individuals and the constitu-
tion of clusters, the cluster burden occurred directly after the imple-
mentation of the soft lockdown. Similarly, the largest clusters, the
longest duration and the clusters with individuals showing large
viral loads were observed just after the same time-lag. This time
lag appears to be shorter in urban areas than in rural areas, likely
reflecting the faster spread of the virus in large towns such as
Lausanne, Morges, Nyon, Yverdon and along the Vaud Riviera. This
faster spread is likely due to differences in social and cultural organi-
zation between rural and urban areas, including denser housing,
which puts a higher risk of subsequent infection in families with
lower socio-economic situations.

Our results highlight the efficacy of this soft lockdown strategy in
controlling the epidemic and decreasing the number of positive cases.
It also demonstrates the importance of acting quickly when the number
of positive cases increases and notwaiting for the settlement of clusters.
12
Additionally, our results show that the relative risk remained very low
throughout the lockdown period. Of note, the compliance of Swiss
residents during the first soft lockdown is signaled by the absence of
any significant cluster fromMay 3 to June 16. Finally, it has not escaped
our notice that it is already possible to observe the beginnings of the
second wave from June 22, 2020 (Fig. 2A), which occurred exactly two
weeks after a series of relaxations to the protective measures, including
the authorization of public demonstrations of up to 300 people and the
opening of nightclubs (June 6, 2020).

5. Conclusion

Our results highlight that cluster size is positively related to the pres-
ence of individuals with high viral loads, the latter being more
commonly found in clusters harboring the youngest age group investi-
gated in this study. This work also stresses the fact that cluster size
and cluster duration are largely dependent on the viral load of a few
number of individuals within a given cluster, underlying the impact of
viral load on contagiousness.

Altogether, we provide robust data suggesting that transmission
may occur despite source cases in a cluster presenting a viral load
below 100,000 copies/ml. Such low viral load cases remain undetected
by antigen testing, highlighting the importance of RT-PCRs assays in de-
tecting cases and defining subsequent tracing strategies. This in-depth
analysis suggests that even older at-risk individuals might get infected
by SARS-CoV-2 despite active prevention, even if all cluster individuals
exhibit a low viral load (below 100,000 copies/ml).

Finally, such a spatio-temporal characterization of clusters demon-
strates the huge effect of the soft lockdown that took place in
Switzerland from March 16 to April 27, 2020. These important results
have been documented due to the contribution of the geospatial analy-
sis of clusters.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2021.147483.

CRediT authorship contribution statement

Anaïs Ladoy: Investigation, Data curation, Methodology, Formal
analysis, Software, Writing – review & editing. Onya Opota: Writing –
review & editing, Resources, Validation. Pierre-Nicolas Carron:
Resources, Writing – review & editing, Validation. Idris Guessous:
Validation,Writing – review& editing. Séverine Vuilleumier:Writing –
original draft, Writing – review & editing, Supervision. Stéphane Joost:
Conceptualization,Writing – original draft, Validation,Writing – review
& editing, Supervision. Gilbert Greub: Conceptualization, Writing –
original draft, Validation, Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgments

Anaïs Ladoy is funded by the Direction Générale de la Santé of the
state of Vaud (DGSVaud) in the context of the GEOSAN project (Grant
Agreement C/20-21/037). Wewould like also to thank Annie Guillaume
aswell as two anonymous reviewers whose contributionmade it possi-
ble to improve the quality of this article.

Ethical statement

This study was approved by the Commission cantonale d'éthique de
la recherche sur l'être humain (CER-VD), Switzerland. Authorization no.
2020-01302 (20.7.2020).

https://doi.org/10.1016/j.scitotenv.2021.147483
https://doi.org/10.1016/j.scitotenv.2021.147483


A. Ladoy, O. Opota, P.-N. Carron et al. Science of the Total Environment 787 (2021) 147483
Data availability statement

The dataset analyzed during the current study is available from the
corresponding author upon reasonable request. The dataset could
not be made publicly available due to the sensitivity of individual
georeferenced SARS-CoV-2 testing data. Requests to access the data
should be directed to Prof. Gilbert Greub (gilbert.greub@chuv.ch).

References

Bejon, P., Williams, T.N., Liljander, A., Noor, A.M., Wambua, J., Ogada, E., Olotu, A., Osier,
F.H.A., Hay, S.I., Färnert, A., Marsh, K., 2010. Stable and unstable malaria hotspots in
longitudinal cohort studies in Kenya. PLoS Med. 7, e1000304.

Beldomenico, P.M., 2020. Do superspreaders generate new superspreaders? A hypothesis
to explain the propagation pattern of COVID-19. Int. J. Infect. Dis. 96, 461–463.

Besag, J., Diggle, P.J., 1977. SimpleMonte Carlo tests for spatial pattern. J. R. Stat. Soc. Ser. C
Appl. Stat. 26, 327–333.

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E., 2008. Fast unfolding of commu-
nities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008.

Bousema, T., Griffin, J.T., Sauerwein, R.W., Smith, D.L., Churcher, T.S., Takken,W., Ghani, A.,
Drakeley, C., Gosling, R., 2012. Hitting hotspots: spatial targeting of malaria for con-
trol and elimination. PLoS Med. 9, e1001165.

Caruana, G., Croxatto, A., Kampouri, E., Kritikos, A., Opota, O., Foerster, M., Brouillet, R.,
Senn, L., Lienhard, R., Egli, A., Pantaleo, G., Carron, P.-N., Greub, G., 2021.
Implementing SARS-CoV-2 rapid antigen testing in the emergency ward of a Swiss
University Hospital: the INCREASE study. 4. Microorganisms 9, 798.

Chen, J., Roth, R.E., Naito, A.T., Lengerich, E.J., MacEachren, A.M., 2008. Geovisual analytics
to enhance spatial scan statistic interpretation: an analysis of U.S. cervical cancer
mortality. Int. J. Health Geogr. 7, 57.

Chu, I.Y.-H., Alam, P., Larson, H.J., Lin, L., 2020. Social consequences of mass quarantine
during epidemics: a systematic review with implications for the COVID-19 response.
J. Travel Med. 27.

Clark, A., Jit, M., Warren-Gash, C., Guthrie, B., Wang, H.H.X., Mercer, S.W., Sanderson, C.,
McKee, M., Troeger, C., Ong, K.L., Checchi, F., Perel, P., Joseph, S., Gibbs, H.P.,
Banerjee, A., Eggo, R.M., Nightingale, E.S., O’Reilly, K., Jombart, T., Edmunds, W.J.,
Rosello, A., Sun, F.Y., Atkins, K.E., Bosse, N.I., Clifford, S., Russell, T.W., Deol, A.K., Liu,
Y., Procter, S.R., Leclerc, Q.J., Medley, G., Knight, G., Munday, J.D., Kucharski, A.J.,
Pearson, C.A.B., Klepac, P., Prem, K., Houben, R.M.G.J., Endo, A., Flasche, S., Davies,
N.G., Diamond, C., van Zandvoort, K., Funk, S., Auzenbergs, M., Rees, E.M., Tully, D.C.,
Emery, J.C., Quilty, B.J., Abbott, S., Villabona-Arenas, C.J., Hué, S., Hellewell, J.,
Gimma, A., Jarvis, C.I., 2020. Global, regional, and national estimates of the population
at increased risk of severe COVID-19 due to underlying health conditions in 2020: a
modelling study. Lancet Glob. Health 8, e1003–e1017.

Corman, V.M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D.K., Bleicker, T., Brünink,
S., Schneider, J., Schmidt, M.L., Mulders, D.G., Haagmans, B.L., Veer, B. van der, Brink, S.
van den, Wijsman, L., Goderski, G., Romette, J.-L., Ellis, J., Zambon, M., Peiris, M.,
Goossens, H., Reusken, C., Koopmans, M.P., Drosten, C., 2020. Detection of 2019 novel
coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 25, 2000045.

Cromley, E.K., 2019. Using GIS to address epidemiologic research questions. Curr.
Epidemiol. Rep. 6, 162–173.

Danis, K., Epaulard, O., Bénet, T., Gaymard, A., Campoy, S., Botelho-Nevers, E.,
Bouscambert-Duchamp, M., Spaccaferri, G., Ader, F., Mailles, A., Boudalaa, Z.,
Tolsma, V., Berra, J., Vaux, S., Forestier, E., Landelle, C., Fougere, E., Thabuis, A.,
Berthelot, P., Veil, R., Levy-Bruhl, D., Chidiac, C., Lina, B., Coignard, B., Saura, C.,
Investigation Team, 2020. Cluster of coronavirus disease 2019 (COVID-19) in the
French Alps, February 2020. Clin. Infect. Dis. 71, 825–832.

De Ridder, D., Sandoval, J., Vuilleumier, N., Stringhini, S., Spechbach, H., Joost, S., Kaiser, L.,
Guessous, I., 2020a. Geospatial digital monitoring of COVID-19 cases at high spatio-
temporal resolution. Lancet Digit. Health 2, e393–e394.

De Ridder, D., Sandoval, J., Vuilleumier, N., Azman, A.S., Stringhini, S., Kaiser, L., Joost, S.,
Guessous, I., 2020b. Socioeconomically disadvantaged neighborhoods face increased
persistence of SARS-CoV-2 clusters. Front. Public Health 8.

Desjardins, M.R., Hohl, A., Delmelle, E.M., 2020. Rapid surveillance of COVID-19 in the
United States using a prospective space-time scan statistic: detecting and evaluating
emerging clusters. Appl. Geogr. 118, 102202.

Ester, M., Kriegel, H.-P., Xu, X., 1996. A density-based algorithm for discovering clusters in
large spatial databases with noise. Proceedings of the Second International Confer-
ence on Knowledge Discovery and Data MiningEvangelos Simoudis, Jiawei Han,
and Usama Fayyad. AAAI Press, Menlo Park, California, p. 6.

Faber, M., Ghisletta, A., Schmidheiny, K., 2020. A lockdown index to assess the economic
impact of the coronavirus. Swiss J. Econ. Stat. 156, 11.

Franch-Pardo, I., Napoletano, B.M., Rosete-Verges, F., Billa, L., 2020. Spatial analysis and
GIS in the study of COVID-19. A review. Sci. Total Environ. 739, 140033.

Frieden, T.R., Lee, C.T., 2020. Identifying and interrupting superspreading events-
implications for control of severe acute respiratory syndrome coronavirus 2. Emerg.
Infect. Dis. 26, 1059–1066.

Gatrell, A.C., Bailey, T.C., Diggle, P.J., Rowlingson, B.S., 1996. Spatial point pattern analysis
and its application in geographical epidemiology. Trans. Inst. Br. Geogr. 21, 256–274.

Greub, G., Sahli, R., Brouillet, R., Jaton, K., 2016. Ten years of R&D and full automation in
molecular diagnosis. Future Microbiol. 11, 403–425.

Hohl, A., Delmelle, E.M., Desjardins, M.R., Lan, Y., 2020. Daily surveillance of COVID-19
using the prospective space-time scan statistic in the United States. Spat. Spatio-
Temporal Epidemiol. 34, 100354.
13
Jaafar, R., Aherfi, S., Wurtz, N., Grimaldier, C., Hoang, V.T., Colson, P., Raoult, D., La Scola, B.,
2020. Correlation between 3790 qPCR positives samples and positive cell cultures in-
cluding 1941 SARS-CoV-2 isolates. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am.,
ciaa1491 https://doi.org/10.1093/cid/ciaa1491.

Jacot, D., Greub, G., Jaton, K., Opota, O., 2020. Viral load of SARS-CoV-2 across patients and
compared to other respiratory viruses. Microbes Infect. 22, 617–621.

Jacquez, G.M., Greiling, D.A., 2003. Local clustering in breast, lung and colorectal cancer in
Long Island, New York. Int. J. Health Geogr. 2, 3.

Jeong, H.W., Kim, S.-M., Kim, H.-S., Kim, Y.-I., Kim, J.H., Cho, J.Y., Kim, S.-H., Kang, H., Kim,
S.-G., Park, S.-J., Kim, E.-H., Choi, Y.K., 2020. Viable SARS-CoV-2 in various specimens
from COVID-19 patients. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. In-
fect. Dis. 26, 1520–1524.

Kamel Boulos, M.N., Geraghty, E.M., 2020. Geographical tracking and mapping of corona-
virus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) epidemic and associated events around the world: how 21st century GIS
technologies are supporting the global fight against outbreaks and epidemics. Int.
J. Health Geogr. 19, 8.

Keesara, S., Jonas, A., Schulman, K., 2020. Covid-19 and health care’s digital revolution. N.
Engl. J. Med. 382, e82.

Kulldorff, M., 1997. A spatial scan statistic. Commun. Stat. Theory Methods 26,
1481–1496.

Kulldorff, M., 2001. Prospective time periodic geographical disease surveillance using a
scan statistic. J. R. Stat. Soc. Ser. A Stat. Soc. 164, 61–72.

Kuo, F.-Y., Wen, T.-H., Sabel, C.E., 2018. Characterizing diffusion dynamics of disease clus-
tering: a modified space–time DBSCAN (MST-DBSCAN) algorithm. Ann. Am. Assoc.
Geogr. 108, 1168–1186.

Lau, M.S.Y., Grenfell, B., Thomas, M., Bryan, M., Nelson, K., Lopman, B., 2020. Characteriz-
ing superspreading events and age-specific infectiousness of SARS-CoV-2 transmis-
sion in Georgia, USA. Proc. Natl. Acad. Sci. 117, 22430–22435.

Lessler, J., Azman, A.S., McKay, H.S., Moore, S.M., 2017. What is a hotspot anyway? Am.
J. Trop. Med. Hyg. 96, 1270–1273.

Liu, Y., Gayle, A.A., Wilder-Smith, A., Rocklöv, J., 2020. The reproductive number of COVID-
19 is higher compared to SARS coronavirus. J. Travel Med. 27.

Lloyd-Smith, J.O., Schreiber, S.J., Kopp, P.E., Getz, W.M., 2005. Superspreading and the ef-
fect of individual variation on disease emergence. 7066. Nature 438, 355–359.

MicroGIS, S., 2019. LC Swiss Localities - Swiss Postcode Database.
Moraga, P., Montes, F., 2011. Detection of spatial disease clusters with LISA functions. Stat.

Med. 30, 1057–1071.
Moraz, M., Jacot, D., Papadimitriou-Olivgeris, M., Senn, L., Greub, G., Jaton, K., Opota, O.,

2020. Universal admission screening strategy for COVID-19 highlighted the clinical
importance of reporting SARS-CoV-2 viral loads. New Microbes New Infect. 38,
100820.

Mueller, L., Scherz, V., Greub, G., Jaton, K., Opota, O., 2020. Computer-aided medical
microbiology monitoring tool: a strategy to adapt to the SARS-CoV-2 epidemic
and that highlights RT-PCR consistency. medRxiv https://doi.org/10.1101/
2020.07.27.20162123 (2020.07.27.20162123).

Nicola, M., Sohrabi, C., Mathew, G., Kerwan, A., Al-Jabir, A., Griffin, M., Agha, M., Agha, R.,
2020. Health policy and leadership models during the COVID-19 pandemic: a review.
Int. J. Surg. 81, 122–129.

Opota, O., Brouillet, R., Greub, G., Jaton, K., 2020. Comparison of SARS-CoV-2 RT-PCR on a
high-throughput molecular diagnostic platform and the cobas SARS-CoV-2 test for
the diagnostic of COVID-19 on various clinical samples. Pathog. Dis. 78.

Pillonel, T., Scherz, V., Jaton, K., Greub, G., Bertelli, C., 2020. Letter to the editor: SARS-CoV-
2 detection by real-time RT-PCR. Euro Surveill. Bull. Eur. Sur. Mal. Transm. Eur.
Commun. Dis. Bull. 25.

Public Health England, 2020. COVID-19: Epidemiological Definitions of Outbreaks and
Clusters in Particular Settings. GOVUK.

Ruktanonchai, N.W., Floyd, J.R., Lai, S., Ruktanonchai, C.W., Sadilek, A., Rente-Lourenco, P.,
Ben, X., Carioli, A., Gwinn, J., Steele, J.E., Prosper, O., Schneider, A., Oplinger, A.,
Eastham, P., Tatem, A.J., 2020. Assessing the impact of coordinated COVID-19 exit
strategies across Europe. Science 369, 1465–1470.

Schwob, J.M., Miauton, A., Petrovic, D., Perdrix, J., Senn, N., Jaton, K., Onya, O., Maillard, A.,
Minghelli, G., Cornuz, J., Greub, G., Genton, B., D’Acremont, V., 2020. Antigen rapid
tests, nasopharyngeal PCR and saliva PCR to detect SARS-CoV-2: a prospective com-
parative clinical trial. medRxiv https://doi.org/10.1101/2020.11.23.20237057
(2020.11.23.20237057).

SFSO, 2019. STATPOP - Population and Households Statistics. Fed Stat Off.
SFSO, 2020. Population and Household Statistics (STATPOP), Spatial Data 2019. Fed Stat

Off.
Stein, R.A., 2011. Super-spreaders in infectious diseases. Int. J. Infect. Dis. 15, e510–e513.
To, K.K.-W., Tsang, O.T.-Y., Leung, W.-S., Tam, A.R., Wu, T.-C., Lung, D.C., Yip, C.C.-Y., Cai, J.-

P., Chan, J.M.-C., Chik, T.S.-H., Lau, D.P.-L., Choi, C.Y.-C., Chen, L.-L., Chan, W.-M., Chan,
K.-H., Ip, J.D., Ng, A.C.-K., Poon, R.W.-S., Luo, C.-T., Cheng, V.C.-C., Chan, J.F.-W., Hung,
I.F.-N., Chen, Z., Chen, H., Yuen, K.-Y., 2020. Temporal profiles of viral load in posterior
oropharyngeal saliva samples and serum antibody responses during infection by
SARS-CoV-2: an observational cohort study. Lancet Infect. Dis. 20, 565–574.

UNAIDS/WHO Working Group on Global HIV/AIDS and STI Surveillance, Joint United Na-
tions Programme on HIV/AIDS, World Health Organization, 2013. Guidelines for Sec-
ond Generation HIV Surveillance: An Update: Know Your Epidemic.

World Health Organization, 2021a. Weekly epidemiological update - 13 April 2021. Wkly
Epidemiol Update - 13 April 2021.

World Health Organization, 2021b. WHO Coronavirus Disease (COVID-19) Dashboard.
Zhang, X., Rao, H., Wu, Y., Huang, Y., Dai, H., 2020. Comparison of spatiotemporal charac-

teristics of the COVID-19 and SARS outbreaks in mainland China. BMC Infect. Dis. 20,
805.

mailto:gilbert.greub@chuv.ch
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0005
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0005
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0010
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0010
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0015
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0015
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0020
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0020
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0025
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0025
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0030
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0030
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0040
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0040
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0040
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0045
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0045
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0045
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0050
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0050
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0050
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0055
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0055
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0060
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0060
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0065
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0065
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0070
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0070
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0075
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0075
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0080
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0080
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0080
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0085
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0085
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0085
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0085
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0090
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0090
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0095
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0095
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0100
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0100
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0100
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0105
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0105
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0110
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0110
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0115
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0115
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0115
https://doi.org/10.1093/cid/ciaa1491
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0125
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0125
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0130
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0130
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0135
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0135
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0135
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0140
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0140
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0140
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0140
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0140
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0145
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0145
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0150
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0150
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0155
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0155
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0160
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0160
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0160
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0165
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0165
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0165
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0170
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0170
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0175
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0175
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0180
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0180
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0185
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0190
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0190
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0195
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0195
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0195
https://doi.org/10.1101/2020.07.27.20162123
https://doi.org/10.1101/2020.07.27.20162123
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0205
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0205
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0210
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0210
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0210
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0215
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0215
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0215
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0220
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0220
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0225
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0225
https://doi.org/10.1101/2020.11.23.20237057
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0235
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0240
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0240
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0245
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0250
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0250
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0250
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0255
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0255
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0260
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0260
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0265
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0270
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0270
http://refhub.elsevier.com/S0048-9697(21)02554-7/rf0270

	Size and duration of COVID-�19 clusters go along with a high SARS-�CoV-�2 viral load: A spatio-�temporal investigation in V...
	1. Introduction
	2. Material and methods
	2.1. Patients
	2.2. SARS-COV-2 RT-PCR
	2.3. Study area
	2.4. Spatio-temporal clusters
	2.5. Cluster evolution and diffusion zones

	3. Results
	3.1. Epidemic trajectories of positive cases
	3.2. Cluster detection and temporal dynamics
	3.3. Cluster composition
	3.4. Viral load in clusters
	3.5. Cluster size, duration and viral load
	3.6. Geographic distribution of the first epidemic wave

	4. Discussion
	4.1. New information on COVID-19 clusters
	4.1.1. A temporal lag between documentation of positive cases and clusters burden
	4.1.2. Viral load is strongly informative about the presence and size of SARS-CoV-2 clusters
	4.1.3. Advantage of RT-PCRs over antigen-based testing
	4.1.4. High viral load in large clusters within the youngest group age
	4.1.5. Non-significant clusters also convey information on the progression of the epidemic

	4.2. Limitations
	4.2.1. Tested population is not homogeneous through time
	4.2.2. Positive cases might be missing
	4.2.3. Many space-time scan clusters

	4.3. Added value of the methods used
	4.3.1. Geographic clusters to characterize epidemics: a key tool for intervention
	4.3.2. Maps reflect the chronology of the epidemic
	4.3.3. Positive impact of soft lockdown


	5. Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Ethical statement
	Data availability statement
	References




