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Overlapping spatial clusters of sugar-sweetened
beverage intake and body mass index in Geneva
state, Switzerland
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Jean-Michel Gaspoz2,5 and Idris Guessous2,3,5

Abstract

Background: Obesity and obesity-related diseases represent a major public health concern. Recently, studies have
substantiated the role of sugar-sweetened beverages (SSBs) consumption in the development of these diseases.
The fine identification of populations and areas in need for public health intervention remains challenging. This
study investigates the existence of spatial clustering of SSB intake frequency (SSB-IF) and body mass index (BMI),
and their potential spatial overlap in a population of adults of the state of Geneva using a fine-scale geospatial
approach.

Methods: We used data on self-reported SSB-IF and measured BMI from residents aged between 20 and 74 years
of the state of Geneva (Switzerland) that participated in the Bus Santé cross-sectional population-based study
(n= 15,423). Getis-Ord Gi spatial indices were used to identify spatial clusters of SSB-IF and BMI in unadjusted
models and models adjusted for individual covariates (education level, gender, age, nationality, and neighborhood-
level median income).

Results: We identified a significant spatial clustering of BMI and SSB-IF. 13.2% (n= 2034) of the participants were
within clusters of higher SSB-IF and 10.7% (n= 1651) were within clusters of lower SSB-IF. We identified overlapping
clusters of SSB-IF and BMI in specific areas where 11.1% (n= 1719) of the participants resided. After adjustment, the
identified clusters persisted and were only slightly attenuated indicating that additional neighborhood-level
determinants influence the spatial distribution of SSB-IF and BMI.

Conclusions: Our fine-scale spatial approach allowed to identify specific populations and areas presenting higher
SSB-IF and highlighted the existence of an overlap between populations and areas of higher SSB-IF associated with
higher BMI. These findings could guide policymakers to develop locally tailored interventions such as targeted
prevention campaigns and pave the way for precision public health delivery.

Introduction
The prevalence of obesity and obesity-related diseases

has been increasing steadily in most countries over the
past decades1. Although pathways leading to obesity are
varied and complex, notably because of the interplay of
genetic, environmental, and social factors, it has been
suggested that the consumption of sugar-sweetened bev-
erages (SSBs) is an important contributory factor2,3. SSBs
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are defined as drinks with added sugar and include a wide
range of products such as soft drinks, flavored juice
drinks, sports drinks, sweetened tea, coffee drinks, energy
drinks, and electrolyte replacement drinks4. While these
beverages present significant differences in sugar content,
drinks such as sodas can contain up to 39 g of sugar per
330ml can5. Worldwide, SSB sales and consumption have
increased these last decades with the greatest consump-
tions reported in Argentina and the USA6. In Europe, the
annual per capita consumption of SSB was about 95 l in
20157. In Switzerland, SSB consumption increased during
the last 20 years among children, teenagers, and adults to
reach an annual consumption of about 80 l8 thus repre-
senting a growing contribution to the total caloric intake.
Although some controversy remains on whether the
association between obesity and SSB consumption is
causal, a recent systematic review and meta-analysis of
large prospective cohort studies and randomized con-
trolled trials concluded that SSB consumption promotes
weight gain in children and adults9. In addition to the
increase in energy intake associated with long term weight
gain, SSBs may also cause health risks through the
metabolic response to fructose, a major component of
SSBs. High intake of fructose can lead to increased visc-
eral adiposity, lipid dysregulation, and decreased insulin
sensitivity10. Recent meta-analyses also concluded that a
normal consumption of SSBs was associated with a
greater risk of developing diet-related diseases such as
cardiovascular diseases11, hypertension12,13, stroke14,15,
and type 2 diabetes16, independently of adiposity.
Accordingly, several governmental and public health

interventions have been implemented to reduce the
consumption of SSB and increase awareness about the
health consequences associated with SSB consumption17.
In the last decade, SSB taxation, already introduced in
some states in the USA and several other countries, has
been proposed to reduce SSB consumption, reduce
healthcare costs and generate revenue for health initia-
tives18. However, objections against such tax have raised
in many countries, notably due to its regressive nature and
supposed lack of efficacy to lower obesity prevalence18.
Nevertheless, it has been suggested that these arguments
could be addressed by ensuring that the revenues gener-
ated are allocated preferentially to programs promoting
nutrition and obesity-prevention for the most in need18.
Therefore, identifying specific populations at risk of SSB
overconsumption is of utmost importance for health
policymakers. Still, the identification of such populations
or areas in need of intervention is far from optimal.
Spatial analysis methods have been developed and

introduced in epidemiological research to explore the link
between place of residence and health19. Areas where
individuals show a higher BMI and a high need for
interventions to reduce SSB consumption can be revealed

by spatial clustering, defined as an unusual concentration
of individuals with a specific outcome in space. Although
the identification of these populations and areas could
guide place-based public health interventions, research on
the spatial variation of diet-related diseases risk factors
such as SSB consumption at the local level remains scarce.
Most studies focused on SSB consumption patterns at the
county or state-level by aggregating individual-level
data20–22 which results in a smoothing altering the ori-
ginal signal23. One recent study reported the spatial
clustering of SSB consumption in adolescents using a
sample of 1292 precisely georeferenced residential
addresses from the Boston youth study and identified
clustering of high prevalence of non-soda SSBs intake24.
However, this study examined SSB consumption as a
binary variable (never versus any) and did not examine the
spatial clustering of BMI.
The primary objective of this study was to investigate

whether local spatial clusters of SSB-IF and BMI exist
among a general adult population of the state of Geneva.
The secondary objective was to investigate if clusters of
higher SSB-IF overlap with clusters of higher BMI. Areas
of high BMI and high SSB consumption—i.e., areas of
high priority for future place-based interventions to
reduce SSB consumption could be selected by policy-
makers as the starting point in developing locally tailored
interventions.

Methods
Data source and study population
Data on adults were collected using the Bus Santé

study25, a cross-sectional population-based study that
collects information on cardiovascular risk factors. Every
year, a stratified sample of 500 men and 500 women—
representative of the State of Geneva’s 100,000 males and
100,000 females non-institutionalized residents aged
35–74 (20–74 since 2011)—is recruited and studied. Four
trained collaborators interview and examine the partici-
pants. All procedures are reviewed and standardized
across technicians regularly.
Eligible subjects are identified via a standardized pro-

cedure using an annual residential list established by the
local government. This list includes all individuals living
in the State of Geneva. An invitation to participate is
mailed to the sampled subjects and, if they do not
respond, up to seven telephone calls are made at different
times on various days of the week. If telephone contact is
unsuccessful, two more invitation letters are sent. Subjects
that are not reached are replaced using the same selection
protocol, the ones who refuse to participate are not
replace. Finally, subjects who accept to participate receive
a self-administered standardized questionnaire, including
a semi-quantitative food frequency section. Geographic
coordinates of the postal address are used for individual
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geographic information. For this analysis, data from sur-
veys 1995 to 2014 were used, corresponding to 15,767
participants. The average participation rate for 1995–2014
was 61% (range: 53–69%).

Body mass index and sugar-sweetened beverages intake
frequency
Participants bring filled-in questionnaires, which are

checked for correct completion by trained interviewers26.
Body weight is measured with the subject lightly dressed,
without shoes and using a medical scale (precision 0.5 kg);
standing height is measured using a medical gauge (pre-
cision 1 cm). Body mass index (BMI) is calculated as
weight (kg)/height (m2).
SSB-IF is assessed for every participant using a self-

administered, semiquantitative food frequency ques-
tionnaire (FFQ), which also included portion size27,28.
This FFQ has been validated against 24-h recalls among
626 volunteers from the Geneva population, and data
derived from this FFQ have recently contributed to
worldwide analyses29,30. Briefly, this FFQ assesses the
dietary intake of the previous four weeks and consists of
97 different food and beverage items, including SSB
(colas, sodas, lemonades, syrups). For each item, con-
sumption frequencies ranging from “less than once during
the last four weeks” to “2 or more times per day” were
provided; daily SSB-IF was computed from 0 for “less than
once during the last 4 weeks” to 2.5 for “2 or more times
per day”. The local Institutional Ethics Committee
approved the study. All participants gave written
informed consent before entering the study.

Covariates
SSB consumption and BMI covariates included educa-

tion level, gender, age, nationality, and the neighborhood-
level median income of the area. The Bus Santé study data
was used to assess education level, gender, age, and
nationality. Education level was dichotomized as having
tertiary education or not; gender was defined as either
male or female; age was defined as a continuous variable;
nationality was dichotomized as having Swiss nationality
or not. We used income data characterizing the 475
Geneva statistical sectors in 2009 for adjustment. These
data were produced by Statistique Genève31. The yearly
income value (1 CHF= 1.007 USD, June 2018) was
attributed to Bus santé participants based on their postal
address within the corresponding statistical sector.

Statistical analyses
A median regression analysis was used to obtain the

SSB-IF and the BMI adjusted for education level, gender,
age, nationality, and the median income of the area32.
Using the geographical coordinates of the place of

residence, we used the Getis-Ord Gi statistic33 to

investigate whether SSB-IF and BMI were spatially
dependent. Getis-Ord Gi indicators are statistics that
measure spatial dependence and evaluate the existence of
local clusters—hot or cold spots—in the spatial arrange-
ment of a given variable, here SSB-IF and BMI. Gi indi-
cators compare the local sum of individual SSB-IF values
included within a given spatial buffer proportionally to the
sum of individual SSB-IF values within the whole study
area, and similarly for BMI34. The Gi statistic returned for
each value is a Z-score to which a p-value is associated.
The null hypothesis for this statistic is that the values
being analyzed exhibit no spatial clustering. When the p-
values are statistically significant, it can be assumed that
the spatial distribution is not random. Statistical sig-
nificance testing was based on a conditional randomiza-
tion procedure35 using a sample of 999 permutations.
Large statistically significant positive Z-scores reveal a
clustering of higher values while large significant negative
Z-scores reveal a clustering of lower values.
We assessed the presence of overall spatial dependence

using the global Moran’s I statistic36. A correlogram cal-
culated with a maximum distance of 4 km produced
global Moran’s I ranging between 0 and 0.011 for BMI in
the ten 400m-bins, and between 0 and 0.001 for SSB-IF.
Considering a correlogram calculated with a maximum
distance of 2 km, Moran’s I for BMI ranged between 0.002
and 0.016 in the ten 200 m-bins, and between 0 and 0.003
for SSB-IF, translating no global spatial autocorrelation in
both variables. Therefore, no distance threshold could be
determined on this basis. The results of the analysis of
SSB-IF and BMI variables presented in this study used a
binary spatial weights matrix based on a fixed spatial
buffer of 1200 m around the place of residence of each
individual as this distance approximates the size of a
typical neighborhood in the urban areas of the studied
territory. The spatial weights were row standardized—the
sum of the weights (W) equals 1, and each individual
weight equals 1/Wi—to obtain proportional weights. This
method is used when the number of neighbors varies. In
our analysis, the indicators Gi and Gi* are homogeneous
of order zero in Wij and thus invariant34. Statistical sig-
nificance was considered for a p-value < 0.05 for all spatial
dependence measures.
Finally, to determine whether SSB-IF, BMI, and their

spatial dependence were stable during the 1995–2014
period, the dataset was divided into 3 subperiods with a
high number of participants to favor the robustness of the
evaluation: subperiod 1 (P1)= 1995–2001 (n= 5511),
subperiod 2 (P2)= 2002–2008 (n= 4714), and subperiod
3 (P3)= 2009–2014 (n= 5357). We then conducted a
Tukey’s multiple comparison analysis37 method to ensure
that the mean of the SSB-IF and the BMI had not
increased or decreased sharply between the three sub-
periods. Finally, we calculated global Moran’s I36 statistics
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to verify that there was no difference in global spatial
autocorrelation between the three subperiods.
On the maps produced, white dots correspond to

individuals with a non-significant Z-score. Individuals
with a statistically significant positive Z-score are repre-
sented by red dots, indicating a clustering of higher values
within a spatial buffer of 1200m, and are found closer
together than expected if the underlying spatial process
was random. Blue dots correspond to individuals with a
statistically significant negative Z-score, meaning that
lower values cluster within a spatial buffer of 1200 m, and
are found closer together than expected if the underlying
spatial process was random. We present maps of SSB-IF
and BMI in unadjusted models and models adjusted for
individual covariates.
In order to compare the overlap between SSB-IF and

BMI spatial clusters, participants were categorized in 10
classes (Fig. S3) using the combination of the previously
computed Getis-Ord Gi clusters SSB-IF and BMI. The
same classification was performed before and after
adjustment for covariates.

Results
After excluding participants for missing data, 15,423

(97.8%) participants were retained. Genders were repre-
sented at the same rate (50.0%), the mean age of the
participants was 51.3 years (SD ± 11.0 years), 37.7% of the
participants had a university level degree, 70.6% were of
Swiss nationality and 29.4% of other nationalities, the
neighborhood-level median yearly income was 72,166
CHF. The mean SSB-IF was about 0.22 SSB/day (SD ± 0.5
SSB/day) and 0.18 SSB/day (SD ± 0.5 SSB/day) after
adjustment for covariates (Table 1). About 49% of the
participants reported any consumption of SSB in the past
four weeks. SSB consumption prevalence was around 70%
in participants under 40 years old. The prevalence of
participants consuming SSBs “once a day” and “twice or
more per day” was 5.8% and 3.5%, respectively. The mean
BMI was 24.9 kg/m2 (SD ± 4.1 kg/m2) and 25.0 kg/m2 (SD
± 3.8 kg/m2) after adjustment for covariates. Around half
of participants had a normal weight (49.5%, BMI between
18.5 and 25 kg/m2) while 44% were at least overweight.
Analyses of mean and trends of BMI and SSB-IF (Table

S1), as well as Moran’s I (Table S2) across the three
subperiods are presented in the supplementary materials.
Despite a slight increase of BMI and SSB-IF over time, the
difference was only significant between P1 (1995–2001)
and P3 (2009–2014) for both raw and adjusted variables
(Fig. S1). The absence of global spatial autocorrelation for
both variables was stable during the three subperiods
while the spatial distribution of local clusters of BMI and
SSB-IF slightly varied (SSB-IF hotspot downtown during
P1 only) (Fig. S2).

Sugar-sweetened beverages intake clusters
Before adjustment, 13.2% of the participants (n= 2034)

were part of a cluster of higher SSB-IF, 10.7% (n= 1651)
of a cluster of lower SSB-IF (Fig. 1a) and 76.1% (n=
11,738) showed no spatial dependence. After adjustment,
13.0% (n= 2011) of the participants were included within
SSB-IF hot spots, 9.6% (n= 1476) in SSB-IF cold spots
(Figs. 1b) and 77.4% (n= 11,936) showed no spatial
dependence (Fig. S4A). Both analyses highlighted clear
spatial patterns of SSB-IF with SSB-IF cold spots mainly
located to the east of the lake (Fig. 1, landmark #6) and
SSB-IF hot spots to the west (Fig. 1, landmarks #1, #3, #4,
#9). The main effect of covariates adjustment was an
attenuation of the geographic footprint of hot and cold
spots.

BMI clusters
Before adjustment, 26.0% (n= 4014) of the participants

were located within BMI hot spots, 23.3% (n= 3591)
within BMI cold spots and 50.7% (n= 7818) showed no
spatial dependence (Fig. 2a). After adjustment, 22.1% (n
= 3409) were located within BMI hot spots, 24.4% (n=
3761) within BMI cold spots (Fig. 2b) and 53.5% (n=
8253) showed no spatial dependence (Fig. S4B). The
adjustment of covariates thinned down the large hot spot
located between landmarks #1 and #5 and shifted the
large cold spot located between landmarks #5 and #6
towards the west, while reducing it slightly.

Table 1 Summary characteristics, 1995–2014 Bus Santé
study participants (n= 15,423)

Variable n (%) Mean (SD)

Gender

Men 7713 (50) –

Women 7710 (50) –

Age (years) 15,423 (100) 52.3 (11.0)

Neighborhood-level median

income (CHF)

15,423 (100) 765,43.8

(19961.4)

Education

Tertiary 5820 (37.8) –

Others 9603 (62.2) –

Nationality

Swiss 10,883 (70.5) –

Others 4540 (29.5) –

Body mass index (kg/m2) 15,423 (100) 24.9 (4.0)

Sugar-sweetened beverage

intake (SSB per day)

15,423 (100) 0.2 (0.5)
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Fig. 1 (See legend on next page.)
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Spatial overlap between SSB-IF and BMI clusters
Spatial overlap between high SSB-IF and high BMI

clusters (i.e., a co-location of SSB-IF hot spot and BMI hot
spot-class 1) of around 40% was identified and included
11.1% (n= 1719) of the participants (Fig. 3a). After
adjustment for education level, gender, age, nationality,
and the median income of the area, the overlap between
high SSB-IF and high BMI clusters was around 42% and
included 10.3% (n= 1595) of the participants (Fig. 3b).
The overlap between lower SSB-IF and lower BMI clus-
ters was around 25% in the unadjusted model and around
19% after adjustment for covariates. The overlap between
discordant clusters—higher BMI with lower SSB-IF and
lower BMI with higher SSB-IF—was very low (<1%).

Discussion
This study reveals statistically significant spatial clusters

of measured BMI and self-reported SSB-IF among a
general adult population using novel spatial statistical
methods. Spatial clusters of SSB-IF and BMI resisted the
adjustment for covariates and were only slightly atte-
nuated. We identified overlapping spatial clusters of SSB-
IF and BMI in specific areas in both unadjusted models
and models adjusted for covariates. The intersection
between the set of participants in higher BMI clusters and
the set of participants in higher SSB-IF clusters was
around 40% and included around one-tenth of the parti-
cipants. Interestingly, around 80% of the participants in
the cluster of higher adjusted SSB-IF were also in the
cluster of higher adjusted BMI while only 53% of the
participants in the cluster of higher adjusted BMI were
also in the cluster of higher adjusted SSB-IF.
To the best of our knowledge, this is the first study to

examine SSB-IF and BMI spatial clustering simulta-
neously using a fine-scale geospatial approach. Other
studies explored the spatial distribution of SSB con-
sumption but at broader geographic scales, usually county
or state-level20–22. However, the analysis of local-scale
phenomena, such as SSB consumption, can be biased by
aggregating point-based measures into large adminis-
trative spatial units23. By using individual data and con-
sidering space as a continuum, this study addresses the
spatial aggregation bias.

Some of the identified areas presenting a higher BMI
and SSB-IF have a lower socioeconomic status than other
districts of Geneva, an urban state where recent evidence
highlighted the existence of social inequalities in dietary
intake38. Whilst neighborhood socioeconomic status (e.g.,
neighborhood deprivation, neighborhood segregation,
population density) is known to be a determinant of
dietary habits, obesity, obesity-related diseases and even
mortality39, we also identified SSB-IF clusters after
adjustment for education level, gender, age, nationality,
and neighborhood-level median income suggesting that
other factors such as network phenomena40 (e.g., social
networks) and environmental factors41 (e.g., types of food
stores, food access) influence weight status and SSB
consumption. In 2017, Tamura et al. reported the spatial
clustering of self-reported SSB consumption in adoles-
cents using a sample of 1292 precisely georeferenced
residential address from the Boston youth study24. They
identified a single cluster of high prevalence of non-soda
SSB consumption. Interestingly, the spatial cluster of non-
soda SSB they detected did not resist adjustment for
gender, education, age, and ethnicity, suggesting that the
covariates played a larger role in the determination of the
spatial distribution of the prevalence of SSB consumption.
In line with our previous work42, we found spatial

clustering of BMI in adults from the general population
and compared them to SSB intake frequency clusters. We
found significant spatial overlap between higher SSB-IF
and higher BMI clusters, and between lower SSB-IF and
lower BMI. The overlap of about 40% identified between
high SSB-IF and high BMI compared to only 1% between
discordant clusters brings further evidence on the link
between SSB consumption and weight status. However,
this study being the first to examine simultaneously BMI
and SSB consumption, we are lacking evidence to com-
pare the extent of the spatial overlap. The areas of high
BMI combined with high SSB-IF could be interpreted as
areas where individuals are already suffering the negative
impact of SSB intake frequency on weight and potentially
other related diseases. Although these areas could also be
explained by the co-location of environmental and social
determinants of SSB consumption and weight status.
Further research on the geographical patterns of their
shared causal mechanisms is needed.

(see figure on previous page)
Fig. 1 Spatial clustering of SSB-IF. Getis-Ord Gi clusters calculated for 15,423 Bus santé participants (1995–2014) for the raw sugar-sweetened
beverage (SSB) intake variable (a) and adjusted for covariates (b). White dots correspond to individuals with a non-significant Z-score. Red dots
correspond to individuals with a statistically significant positive Z-score (α= 0.05), meaning that higher values cluster within a spatial buffer of 1200 m
and are found closer together than expected if the underlying spatial process was random. Blue dots correspond to individuals with a statistically
significant negative Z-score (α=−0.05), meaning that lower values cluster within a spatial buffer of 1200m and are found closer together than
expected if the underlying spatial process was random. Indicative landmarks numbered 1–10 are displayed on the maps and used to support the
description of the results
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Fig. 2 Spatial clustering of BMI. Getis-Ord Gi clusters calculated for 15,423 Bus santé participants (1995–2014) for the raw body mass index (BMI)
variable (a) and adjusted for covariates (b). White dots correspond to individuals with a non-significant Z-score. Red dots correspond to individuals
with a statistically significant positive Z-score (α= 0.05), meaning that higher values cluster within a spatial buffer of 1200 m and are found closer
together than expected if the underlying spatial process was random. Blue dots correspond to individuals with a statistically significant negative Z-
score (α=−0.05), meaning that lower values cluster within a spatial buffer of 1200m and are found closer together than expected if the underlying
spatial process was random. Indicative landmarks numbered 1–10 are displayed on the maps and used to support the description of the results
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Fig. 3 Overlap of higher SSB and higher BMI spatial clusters. The main delimited clusters with individuals belonging to both raw SSB-IF and raw
BMI hotspots contain 1719 individuals. a The main delimited clusters with individuals belonging to the adjusted SSB-IF and BMI hotspots contain
1595 individuals. b Indicative landmarks numbered 1–10 are displayed on the maps and used to support the description of the results
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Our study is not without limitations. Firstly, regard-
ing spatial statistic parameters, we defined our spatial
weights matrix using a spatial buffer of 1200 m, but
other choices may produce slightly different results. We
tested the robustness of our findings using different
spatial buffers and found no meaningful difference in
the clusters obtained. Secondly, we favored the Getis-
Ord Gi statistic over the Local Indicators of Spatial
Association35 as we focused primarily on the detection
of local clusters of higher and lower values, the study of
discordant behaviors would be of interest for future
investigations. Thirdly, participants and non-
participants in the Bus Santé study may differ regard-
ing SSB consumption, and participation bias cannot be
excluded. Still, to reduce participation bias, the Bus
Santé study has a mobile examination unit that covers
three major areas of the State facilitating the partici-
pation of people living in disadvantaged areas. Fourthly,
SSB-IF was self-reported and recall, as well as social
desirability biases cannot be excluded. Finally, pre-
liminary analysis of 3 temporal groups (1995–2001;
2002–2008; 2009–2014) of SSB-IF and BMI produced a
similar overall spatial structure as translated by a stable
global Moran’s I over time; local Getis-Ord Gi clusters
are also stable, with the only exception of SSB-IF for P1
exhibiting a slightly different pattern. The overall sta-
bility described above allowed us to perform an overall
analysis over twenty years of population-based data.
Finally, such an approach is applicable elsewhere since
the variables used in this study are frequently collected
in medical cohorts. One difficulty, however, lies in
being able to benefit from specific geographical data
that precisely locate the place of residence of the
participants.
In addition to guiding interventions in their nature and

priority, characterizing the identified areas could further
our understanding of the social and environmental
determinants of SSB consumption. For example, further
investigations assessing whether environmental factors
associated with SSB consumption (e.g., density of adver-
tising43 and density of SSBs sales point44) differ within
and outside SSB-IF clusters could provide insights into
the causality of SSB overconsumption on health con-
sequences which remains controversial45.

Conclusions
Numerous programs and interventions have been con-

ducted to mitigate obesity prevalence and SSB con-
sumption. More progress might be achieved by
implementing locally tailored interventions targeting the
most vulnerable populations.
Our fine-scale geospatial approach adds to the limited

knowledge on the spatial variation of weight status and
SSB consumption at a local level. We detected spatial

clustering of both SSB-IF and BMI among a population of
adults in the state of Geneva. The identification of specific
areas presenting higher SSB-IF and, for some specific
areas associated with higher BMI values, enables local
legislators and public health experts to develop targeted
interventions and paves the way for precision public
health delivery. The allocation of resources to these
populations in high need of intervention could improve
the efficiency of local programs and potentially diminish
resistance against SSB taxation.
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